The 3rd Riesel problem involves determining the smallest Riesel numbers k•2n-1 for 762,701 < k < 777,149, the second and third Riesel k-values without any possible primes.
: completely included in Prime-Wiki
| m |
nmin |
nmax |
remain |
current |
target
|
| 0 |
1 |
1 |
7,223 |
0 |
1,014
|
| 1 |
2 |
3 |
6,209 |
4 |
1,552
|
| 2 |
4 |
7 |
4,657 |
2 |
1,746
|
| 3 |
8 |
15 |
2,911 |
4 |
1,357
|
| 4 |
16 |
31 |
1,554 |
2 |
803
|
| 5 |
32 |
63 |
751 |
0 |
380
|
| 6 |
64 |
127 |
371 |
0 |
168
|
| 7 |
128 |
255 |
203 |
0 |
88
|
| 8 |
256 |
511 |
115 |
0 |
50
|
| 9 |
512 |
1,023 |
65 |
2 |
29
|
| 10 |
1,024 |
2,047 |
36 |
7 |
7
|
| 11 |
2,048 |
4,095 |
29 |
6 |
6
|
| 12 |
4,096 |
8,191 |
23 |
6 |
6
|
| 13 |
8,192 |
16,383 |
17 |
2 |
2
|
| 14 |
16,384 |
32,767 |
15 |
3 |
3
|
| 15 |
32,768 |
65,535 |
12 |
2 |
2
|
| 16 |
65,536 |
131,071 |
10 |
3 |
3
|
| 17 |
131,072 |
262,143 |
7 |
2 |
2
|
| 18 |
262,144 |
524,287 |
5 |
0 |
0
|
| 19 |
524,288 |
1,048,575 |
5 |
1 |
1
|
| 20 |
1,048,576 |
2,097,151 |
4 |
1 |
≥ 1
|
| unknown |
2,097,152 |
∞ |
3 |
0 |
3
|
Multi Reservation 20: The current nmax = 2,000,000 as of 2024-09-06.