Main Page

Here is a Wiki for primes and related topics, still under construction.

Examples in math (LaTeX) notation
$N \supset \mathbb P = \{ p_n \mid n \in N \}$
$N \supset \mathbb P = \{ p_n \mid n \in N \}$
$\sideset{_1^2}{_3^4}\prod_a^b$
$\sideset{_1^2}{_3^4}\prod_a^b$
$\iiiint\limits_{F} \, dx\,dy\,dz\,dt$
$\iiiint\limits_{F} \, dx\,dy\,dz\,dt$
$f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}$
$f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}$
$\sum_{i=1}^\infty \frac{1}{p_i} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \dotsb = \infty$
$\sum_{i=1}^\infty \frac{1}{p_i} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \dotsb = \infty$
$\pi(1)=0\ ;\ \pi(10) = 4\ ;\ \pi(100) = 25\ ;\ \pi(1000) = 168; \ \pi(1000000)=78498$
$\pi(1)=0\ ;\ \pi(10) = 4\ ;\ \pi(100) = 25\ ;\ \pi(1000) = 168; \ \pi(1000000)=78498$
Example of page categorizations
!TopLevel(7 C)
no subcategories
Help(2 P)
no subcategories
Numbers(1 C)
Primes(2 C)
Primes by formula(1 C)
K*b^n-1(1 C)
(b-1)*b^n-1(2 P)
Primes by name(3 C)
Proth primes(empty)
no subcategories
Riesel primes(empty)
no subcategories
Williams primes(2 P)
no subcategories
Projects(empty)
no subcategories
Reserved(1 P)
no subcategories
System(3 P)
no subcategories
Templates(2 C, 4 P)
Multilanguage(10 P)
no subcategories
Project(1 P)
no subcategories
Example of prime sequence and reservation
Configuration tests: external links open in new browser tab/window