Navigation
Topics Register • News • History • How to • Sequences statistics • Template prototypes

Difference between revisions of "Riesel 2 Riesel"

From Prime-Wiki
Jump to: navigation, search
m
m
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{{DISPLAYTITLE:Riesel numbers of the form {{Kbn|k|n}}}}
 
{{DISPLAYTITLE:Riesel numbers of the form {{Kbn|k|n}}}}
Riesel numbers for which {{Kbn|k|n}} is composite for all natural numbers ''n''.
+
'''Riesel numbers''' are odd numbers {{Vk}} for which {{Kbn|k|n}} is composite for all natural numbers {{Vn}}.
  
 
==See also==
 
==See also==
Line 8: Line 8:
 
<dpl>
 
<dpl>
 
  debug=0
 
  debug=0
  category=Riesel k=Riesel
+
  category=Riesel 2 Riesel
 
  mode=userformat
 
  mode=userformat
 
  include={Riesel prime}:Rk,{Riesel prime}:RRemarks
 
  include={Riesel prime}:Rk,{Riesel prime}:RRemarks
  listseparators={¦class="wikitable sortable"\n!k!!Covering set,\n¦-,,\n¦}
+
  listseparators={¦class="wikitable sortable"\n!{{Vk}}!!Covering set,\n¦-,,\n¦}
 
  secseparators=\n|style="text-align:right"|[[%PAGE%|,]],||{{#replace:,|Covering set = |}}
 
  secseparators=\n|style="text-align:right"|[[%PAGE%|,]],||{{#replace:,|Covering set = |}}
 
  ordermethod=sortkey
 
  ordermethod=sortkey
Line 18: Line 18:
 
</dpl>
 
</dpl>
 
{{Navbox Riesel primes}}
 
{{Navbox Riesel primes}}
[[Category:Riesel k=Riesel| ]]
+
[[Category:Riesel 2 Riesel| ]]

Latest revision as of 07:17, 16 July 2021

Riesel numbers are odd numbers k for which k•2n-1 is composite for all natural numbers n.

See also

Table

There are 16 sequences in this Wiki:

k Covering set
509203 [3, 5, 7, 13, 17, 241]
762701 [3, 5, 7, 13, 17, 241]
777149 [3, 5, 7, 13, 19, 37, 73]
790841 [3, 5, 7, 13, 19, 37, 73]
992077 [3, 5, 7, 13, 17, 241]
1106681 [3, 5, 7, 13, 19, 37, 73]
1247173 [3, 5, 7, 13, 17, 241]
1254341 [3, 5, 7, 13, 17, 241]
1330207 [3, 5, 7, 13, 17, 241]
1330319 [3, 5, 7, 13, 17, 241]
1715053 [3, 5, 7, 13, 19, 37, 73]
1730653 [3, 5, 7, 13, 17, 241]
1730681 [3, 5, 7, 13, 17, 241]
1744117 [3, 5, 7, 13, 19, 73, 109]
1830187 [3, 5, 7, 13, 37, 73, 109]
1976473 [3, 5, 7, 13, 17, 241]
Riesel primes