Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3).
Navigation
Topics Help • Register • News • History • How to • Sequences statistics • Template prototypes

Difference between revisions of "Riesel problem 4"

From Prime-Wiki
Jump to: navigation, search
(New)
 
(Level 19 finished with no primes)
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{DISPLAYTITLE:The 4th Riesel Problem}}
+
{{DISPLAYTITLE:Riesel problem 4, {{Kbn|-|k|2|n}}, {{Num|777149}} < {{Vk}} < {{Num|790841}}}}
The '''4th Riesel problem''' involves determining the smallest [[Riesel number]]s {{Kbn|k|2|n}} for 777149 &lt; {{Vk}} &lt; 790841, the third and fourth Riesel {{Vk}}-values without any possible primes.
+
The '''4th Riesel problem''' involves determining the smallest [[Riesel number]]s {{Kbn|k|2|n}} for {{Num|777149}} &lt; {{Vk}} &lt; {{Num|790841}}, the third and fourth Riesel {{Vk}}-values without any possible primes.
  
 
:<div class="color-Done" style="width:4em; display:inline-block;">&nbsp;</div> : completely included in {{SITENAME}}
 
:<div class="color-Done" style="width:4em; display:inline-block;">&nbsp;</div> : completely included in {{SITENAME}}
Line 27: Line 27:
 
| [[:Category:Riesel 2 4Intervals9|9]] || 512 || {{Num|1023}} || 77 || {{Num|{{PAGESINCATEGORY:Riesel 2 4Intervals9|pages|R}}}} || 37
 
| [[:Category:Riesel 2 4Intervals9|9]] || 512 || {{Num|1023}} || 77 || {{Num|{{PAGESINCATEGORY:Riesel 2 4Intervals9|pages|R}}}} || 37
 
|-
 
|-
| [[:Category:Riesel 2 4Intervals10|10]] || {{Num|1024}} || {{Num|2047}} || 40 || {{Num|{{PAGESINCATEGORY:Riesel 2 4Intervals10|pages|R}}}} || 11
+
| [[:Category:Riesel 2 4Intervals10|10]] || {{Num|1024}} || {{Num|2047}} || 40 || class="color-Done" | 11 || 11
 
|-
 
|-
| [[:Category:Riesel 2 4Intervals11|11]] || {{Num|2048}} || {{Num|4095}} || 29 || {{Num|{{PAGESINCATEGORY:Riesel 2 4Intervals11|pages|R}}}} || 12
+
| [[:Category:Riesel 2 4Intervals11|11]] || {{Num|2048}} || {{Num|4095}} || 29 || class="color-Done" | 12 || 12
 
|-
 
|-
| [[:Category:Riesel 2 4Intervals12|12]] || {{Num|4096}} || {{Num|8191}} || 17 || {{Num|{{PAGESINCATEGORY:Riesel 2 4Intervals12|pages|R}}}} || 5
+
| [[:Category:Riesel 2 4Intervals12|12]] || {{Num|4096}} || {{Num|8191}} || 17 || class="color-Done" | 5 || 5
 
|-
 
|-
| [[:Category:Riesel 2 4Intervals13|13]] || {{Num|8192}} || {{Num|16383}} || 12 || {{Num|{{PAGESINCATEGORY:Riesel 2 4Intervals13|pages|R}}}} || 2
+
| [[:Category:Riesel 2 4Intervals13|13]] || {{Num|8192}} || {{Num|16383}} || 12 || class="color-Done" | 2 || 2
 
|-
 
|-
| [[:Category:Riesel 2 4Intervals14|14]] || {{Num|16384}} || {{Num|32767}} || 10 || {{Num|{{PAGESINCATEGORY:Riesel 2 4Intervals14|pages|R}}}} || 2
+
| [[:Category:Riesel 2 4Intervals14|14]] || {{Num|16384}} || {{Num|32767}} || 10 || class="color-Done" | 2 || 2
 
|-
 
|-
| [[:Category:Riesel 2 4Intervals15|15]] || {{Num|32768}} || {{Num|65535}} || 8 || {{Num|{{PAGESINCATEGORY:Riesel 2 4Intervals15|pages|R}}}} || 3
+
| [[:Category:Riesel 2 4Intervals15|15]] || {{Num|32768}} || {{Num|65535}} || 8 || class="color-Done" | 3 || 3
 
|-
 
|-
| [[:Category:Riesel 2 4Intervals16|16]] || {{Num|65536}} || {{Num|131071}} || 5 || {{Num|{{PAGESINCATEGORY:Riesel 2 4Intervals16|pages|R}}}} || 1
+
| [[:Category:Riesel 2 4Intervals16|16]] || {{Num|65536}} || {{Num|131071}} || 5 || class="color-Done" | 1 || 1
 
|-
 
|-
| [[:Category:Riesel 2 4Intervals17|17]] || {{Num|131072}} || {{Num|262143}} || 4 || {{Num|{{PAGESINCATEGORY:Riesel 2 4Intervals17|pages|R}}}} || 1
+
| [[:Category:Riesel 2 4Intervals17|17]] || {{Num|131072}} || {{Num|262143}} || 4 || class="color-Done" | 1 || 1
 
|-
 
|-
| [[:Category:Riesel 2 4Intervals18|18]] || {{Num|262144}} || {{Num|524287}} || 3 || {{Num|{{PAGESINCATEGORY:Riesel 2 4Intervals18|pages|R}}}} || 2
+
| [[:Category:Riesel 2 4Intervals18|18]] || {{Num|262144}} || {{Num|524287}} || 3 || class="color-Done" | 2 || 2
 
|-
 
|-
| [[:Category:Riesel 2 4Intervals19|19]] || {{Num|524288}} || {{Num|1048576}} || 1 || {{Num|{{PAGESINCATEGORY:Riesel 2 4Intervals19|R}}}} || &ge; {{PAGESINCATEGORY:Riesel 2 4Intervals19|pages|R}}
+
| [[:Category:Riesel 2 4Intervals19|19]] || {{Num|524288}} || {{Num|1048575}} || 1 || class="color-Done" | 0 || 0
 
|-
 
|-
| [[:Category:Riesel problem 4th|unknown]] || {{Num|524288}} || &infin; || {{#expr:{{PAGESINCATEGORY:Riesel problem 4th|pages|R}}-1}} || 0 || {{#expr:{{PAGESINCATEGORY:Riesel problem 4th|pages|R}}-1}}
+
| [[:Category:Riesel 2 4Intervals20|20]] || {{Num|1048576}} || {{Num|2097151}} || 1 || {{Num|{{PAGESINCATEGORY:Riesel 2 4Intervals20|R}}}} || &ge; {{PAGESINCATEGORY:Riesel 2 4Intervals20|pages|R}}
 +
|-
 +
| [[:Category:Riesel problem 4|unknown]] || {{Num|2097152}} || &infin; || {{#expr:{{PAGESINCATEGORY:Riesel problem 4|pages|R}}-1}} || class="color-Done" | 0 || {{#expr:{{PAGESINCATEGORY:Riesel problem 4|pages|R}}-1}}
 
|}
 
|}
 +
 +
[[:Multi Reservation:23|Multi Reservation 23]]: '''The current {{Vn}}<sub>max</sub> = {{Num|{{Multi Reservation:23-NMax}}}} as of {{Multi Reservation:23-Date}}.'''
  
 
{{Navbox Riesel primes}}
 
{{Navbox Riesel primes}}
 
[[Category:Riesel prime conjectures|4]]
 
[[Category:Riesel prime conjectures|4]]
 
[[Category:Riesel 2 4Intervals| ]]
 
[[Category:Riesel 2 4Intervals| ]]
[[Category:Riesel problem 4th| ]]
+
[[Category:Riesel problem 4| ]]

Latest revision as of 18:50, 30 April 2024

The 4th Riesel problem involves determining the smallest Riesel numbers k•2n-1 for 777,149 < k < 790,841, the third and fourth Riesel k-values without any possible primes.

 
 : completely included in Prime-Wiki
m nmin nmax remain current target
0 1 1 6,845 0 957
1 2 3 5,888 1 1,472
2 4 7 4,416 2 1,648
3 8 15 2,768 3 1,276
4 16 31 1,492 2 769
5 32 63 723 0 352
6 64 127 371 0 171
7 128 255 200 0 84
8 256 511 116 0 39
9 512 1,023 77 0 37
10 1,024 2,047 40 11 11
11 2,048 4,095 29 12 12
12 4,096 8,191 17 5 5
13 8,192 16,383 12 2 2
14 16,384 32,767 10 2 2
15 32,768 65,535 8 3 3
16 65,536 131,071 5 1 1
17 131,072 262,143 4 1 1
18 262,144 524,287 3 2 2
19 524,288 1,048,575 1 0 0
20 1,048,576 2,097,151 1 0 ≥ 0
unknown 2,097,152 1 0 1

Multi Reservation 23: The current nmax = 2,000,000 as of 2024-09-06.

Riesel primes