Topics Register • News • History • How to • Sequences statistics • Template prototypes

NFSNET

NFSNET is a distributed computing project that uses the GNFS and SNFS factorization methods to completely factor large numbers of interest to the math community. This project is now dead and replaced by NFS@Home.

Results

There are some factorizations completed by NFSNET, all of them Cunningham numbers, are summarized below.

Some NFSNet results
Number Factors
$\displaystyle{ 5^{311}+1 }$ 13132762900451821968706840158108829466847315743095478589617724372773046827 . P86
$\displaystyle{ 5^{313}-1 }$ 21428622089774767159447145142284385968882142917892658511907216761741 . P143
$\displaystyle{ 5^{311}-1 }$ 38695455401981313830913060474530524458380779268946879355849020686413069 . P102
$\displaystyle{ 5^{313}+1 }$ 90107330782710173585723984396630473536745919968792358417711960610369521 . P126
$\displaystyle{ 10^{229}+1 }$ 13270807703600518273110858480695033043595534787235597140531 . P106
$\displaystyle{ 2^{772}+1 }$ 61138085212831760012082560001130966245067663049594184076112874904437731971413080237731822785297556226950049 . P108
$\displaystyle{ 6^{283}-1 }$ 138457361320915478919381975760508114488979126852819238404548238145324558533 . P99
$\displaystyle{ 5^{317}-1 }$ 1173266048118996938584719882501239841331337879112270918586790280760729499132694039331 . P110
$\displaystyle{ 6^{284}+1 }$ 555910000634197662765503723258626898712572755963073679357601281305609 . P100
$\displaystyle{ 5^{323}-1 }$ 824025642333621472612253607491152025643258690550015151 . 4520075300365525822415973296109200878340148487916084028121991 . P72
$\displaystyle{ 2^{779}+1 }$ 17315878129048863927974905480696448369723747093035498799994851681384411684778961025249 . P127
$\displaystyle{ 10^{239}-1 }$ 383155477843726029783939406113226468701730728790004161 . 128780300340244872385688233345188210841783983757299260103530718169486826135819357 . P94
$\displaystyle{ 2^{787}-1 }$ 171124793552074153093621463907993111755630713094272377046079303 . P142
$\displaystyle{ 2^{787}+1 }$ 1729064962458961255320417417955691339162974743882218922830411737050563040937 . P93
$\displaystyle{ 10^{239}+1 }$ 2846390188891241030645451773087716881978563746547069042984813032147999326242449 . P142
$\displaystyle{ 12^{227}+1 }$ 2166927848376622533621794434244289002299826661900783861848021018401 . P147
$\displaystyle{ 6^{298}+1 }$ 6695749655192816473070349489448185116388391043325628915861 . P157
$\displaystyle{ 7^{271}-1 }$ 127962646077173632312199483013809163214497588966415507177987147170392729827682423052701976465899731717 . P113
$\displaystyle{ 2^{788}+1 }$ 16485261130656200872482989844198639841091212639645236223887409386257443385451391361 . P137
$\displaystyle{ 10^{241}-1 }$ 6864117620760368762783548070444378476387203247067308861991 . P172
$\displaystyle{ 6^{313}-1 }$ 1145667266428264694407427870250002852640339971370109925272739002529333927038171 . P149
$\displaystyle{ 7^{319}-1 }$ 204227297293529257125127118080380016745365752943272818676346275973633953383050572371 . P149
$\displaystyle{ 2^{823}+1 }$ 165504088394688777341777954213302926706011776596326713780562632126238280022902380359311132880309166125996273 . P122
$\displaystyle{ 2^{823}-1 }$ 14318463776157273132646318179504157563387487409638575094260074593259322339364163972504114136247 . P103
$\displaystyle{ 10^{287}-1 }$ 386736023165016911595773048286586040278275120007787504683197800313250373 . P140
$\displaystyle{ 3^{523}-1 }$ 118660861315644501826386980212508132942915206257779375740236957417866662884621310426338818063 . P141
$\displaystyle{ 11^{244}+1 }$ 8002889920577273830420851090219258342350712388277918047535820689055103751832471481802997113 . P157
$\displaystyle{ 7^{319}+1 }$ 3975047917431160297249953259955968186945131148887708281805256392393451 . P154
$\displaystyle{ 7^{304}+1 }$ 996729992864896297685441229117084324961901633115344675218887271504648958630057425015060925493899201 . P145
$\displaystyle{ 10^{269}-1 }$ 2211459886311754779116554026679494335670326227547524190235297713426923019604371977151573671 . P143