Note: Due to changes in the Riesel prime template, most of those pages (and related) are not shown properly.
This will take some time!
Wanna help? Please move any Riesel prime page first, then edit/add the base parameter.
Navigation
Topics Register • News • History • How to • Sequences statistics • Template prototypes

NFSNET

From Prime-Wiki
Jump to: navigation, search

NFSNET is a distributed computing project that uses the GNFS and SNFS factorization methods to completely factor large numbers of interest to the math community. This project is now dead and replaced by NFS@Home.

Status

This project is now dead.

Results

There are some factorizations completed by NFSNET, all of them Cunningham numbers, are summarized below.

Some NFSNet results
Number Factors
[math]\displaystyle{ 5^{311}+1 }[/math] 13132762900451821968706840158108829466847315743095478589617724372773046827 . P86
[math]\displaystyle{ 5^{313}-1 }[/math] 21428622089774767159447145142284385968882142917892658511907216761741 . P143
[math]\displaystyle{ 5^{311}-1 }[/math] 38695455401981313830913060474530524458380779268946879355849020686413069 . P102
[math]\displaystyle{ 5^{313}+1 }[/math] 90107330782710173585723984396630473536745919968792358417711960610369521 . P126
[math]\displaystyle{ 10^{229}+1 }[/math] 13270807703600518273110858480695033043595534787235597140531 . P106
[math]\displaystyle{ 2^{772}+1 }[/math] 61138085212831760012082560001130966245067663049594184076112874904437731971413080237731822785297556226950049 . P108
[math]\displaystyle{ 6^{283}-1 }[/math] 138457361320915478919381975760508114488979126852819238404548238145324558533 . P99
[math]\displaystyle{ 5^{317}-1 }[/math] 1173266048118996938584719882501239841331337879112270918586790280760729499132694039331 . P110
[math]\displaystyle{ 6^{284}+1 }[/math] 555910000634197662765503723258626898712572755963073679357601281305609 . P100
[math]\displaystyle{ 5^{323}-1 }[/math] 824025642333621472612253607491152025643258690550015151 . 4520075300365525822415973296109200878340148487916084028121991 . P72
[math]\displaystyle{ 2^{779}+1 }[/math] 17315878129048863927974905480696448369723747093035498799994851681384411684778961025249 . P127
[math]\displaystyle{ 10^{239}-1 }[/math] 383155477843726029783939406113226468701730728790004161 . 128780300340244872385688233345188210841783983757299260103530718169486826135819357 . P94
[math]\displaystyle{ 2^{787}-1 }[/math] 171124793552074153093621463907993111755630713094272377046079303 . P142
[math]\displaystyle{ 2^{787}+1 }[/math] 1729064962458961255320417417955691339162974743882218922830411737050563040937 . P93
[math]\displaystyle{ 10^{239}+1 }[/math] 2846390188891241030645451773087716881978563746547069042984813032147999326242449 . P142
[math]\displaystyle{ 12^{227}+1 }[/math] 2166927848376622533621794434244289002299826661900783861848021018401 . P147
[math]\displaystyle{ 6^{298}+1 }[/math] 6695749655192816473070349489448185116388391043325628915861 . P157
[math]\displaystyle{ 7^{271}-1 }[/math] 127962646077173632312199483013809163214497588966415507177987147170392729827682423052701976465899731717 . P113
[math]\displaystyle{ 2^{788}+1 }[/math] 16485261130656200872482989844198639841091212639645236223887409386257443385451391361 . P137
[math]\displaystyle{ 10^{241}-1 }[/math] 6864117620760368762783548070444378476387203247067308861991 . P172
[math]\displaystyle{ 6^{313}-1 }[/math] 1145667266428264694407427870250002852640339971370109925272739002529333927038171 . P149
[math]\displaystyle{ 7^{319}-1 }[/math] 204227297293529257125127118080380016745365752943272818676346275973633953383050572371 . P149
[math]\displaystyle{ 2^{823}+1 }[/math] 165504088394688777341777954213302926706011776596326713780562632126238280022902380359311132880309166125996273 . P122
[math]\displaystyle{ 2^{823}-1 }[/math] 14318463776157273132646318179504157563387487409638575094260074593259322339364163972504114136247 . P103
[math]\displaystyle{ 10^{287}-1 }[/math] 386736023165016911595773048286586040278275120007787504683197800313250373 . P140
[math]\displaystyle{ 3^{523}-1 }[/math] 118660861315644501826386980212508132942915206257779375740236957417866662884621310426338818063 . P141
[math]\displaystyle{ 11^{244}+1 }[/math] 8002889920577273830420851090219258342350712388277918047535820689055103751832471481802997113 . P157
[math]\displaystyle{ 7^{319}+1 }[/math] 3975047917431160297249953259955968186945131148887708281805256392393451 . P154
[math]\displaystyle{ 7^{304}+1 }[/math] 996729992864896297685441229117084324961901633115344675218887271504648958630057425015060925493899201 . P145
[math]\displaystyle{ 10^{269}-1 }[/math] 2211459886311754779116554026679494335670326227547524190235297713426923019604371977151573671 . P143

See also

External links