Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Search results
Create the page "Proth primes" on this wiki! See also the search results found.
- |WiNlist={{Reuse Primelist|Proth prime 6 35|PNlist|2}} ...es 2*{{Vn}} to {{NPr|35|6|n}}.<br>For additional history, see above reused Proth sequence.476 bytes (62 words) - 07:56, 23 September 2024
- |WiNlist={{Reuse Primelist|Proth prime 7 48|PNlist|2}} ...es 2*{{Vn}} to {{NPr|48|7|n}}.<br>For additional history, see above reused Proth sequence.476 bytes (62 words) - 08:15, 23 September 2024
- |WiNlist={{Reuse Primelist|Proth prime 6 37|PNlist|2}} ...es 2*{{Vn}} to {{NPr|37|6|n}}.<br>For additional history, see above reused Proth sequence.491 bytes (63 words) - 04:31, 4 October 2024
- Finding primes for the [[Sierpiński number base 5]] problem. |include={Proth prime}:Pk,{Proth prime}:Pk3 KB (270 words) - 09:33, 1 October 2024
- ...ontinuing the [[CRUS Liskovets-Gallot]] subproject to find the remaining 9 primes required to prove the other 3 conjectures. [[Valery Liskovets]] studied the list of {{Kbn|+|k|n}} primes and observed, that the {{Vk}}'s ({{Vk}} divisible by 3)2 KB (367 words) - 12:42, 9 May 2024
- ...|Riesel]] and [[Proth prime|Proth]] {{Vk}}-values, divisible by 3, with no primes for {{Vn}}-values of a given parity. ...roven by [[Yves Gallot]], who provided examples for all four cases (Riesel/Proth, even/odd). Gallot further conjectured that these four examples are the sma8 KB (1,001 words) - 14:05, 2 June 2024
- ...], [[Proth prime 2 222113|222113]], [[Proth prime 2 225931|225931]], and [[Proth prime 2 237019|237019]]. The search is at {{Vn}} > {{Num|{{Multi Reservatio ...are also no known primes for {{Vk}} = [[Proth prime 2 22699|22699]] and [[Proth prime 2 67607|67607]], but these are already part of the standard Sierpińs2 KB (254 words) - 11:43, 5 September 2021
- ...[Proth prime 6679881|{{Kbn|+|6679881|2|6679881}}]] ([http://primes.utm.edu/primes/page.php?id=89536 2,010,852 digits]) ...[Proth prime 6328548|{{Kbn|+|6328548|2|6328548}}]] ([http://primes.utm.edu/primes/page.php?id=87775 1,905,090 digits])753 bytes (97 words) - 08:45, 12 September 2021
- {{DISPLAYTITLE:Proth numbers of the form {{Kbn|+|k|n}} with {{Vk}} mod 3 = 0}} Proth numbers {{Kbn|+|k|n}} where {{Vk}}-value is a multiple of 3.1 KB (156 words) - 09:18, 23 July 2021
- |WiNlist={{Reuse Primelist|Proth prime 3 80|PNlist|4}} ...es 4*{{Vn}} to {{NPr|80|3|n}}.<br>For additional history, see above reused Proth sequence.482 bytes (62 words) - 08:05, 4 October 2024
- ...mat divisors.<ref>[https://www.primegrid.com/forum_thread.php?id=8783 What primes can be Fermat divisors? - PrimeGrid Forums]</ref> ==Found primes==4 KB (448 words) - 09:13, 7 September 2021
- |WiNlist={{Reuse Primelist|Proth prime 11 120|PNlist|2}} ...2*{{Vn}} to {{NPr|120|11|n}}.<br>For additional history, see above reused Proth sequence.372 bytes (50 words) - 13:32, 23 September 2024
- ...ently working on primes of the form {{NPr|1281979|n}}: {{Vn}} < {{Num|{{GP|Proth prime 2 1281979|PMaxn}}}} completed.271 bytes (34 words) - 15:09, 22 December 2023
- {{DISPLAYTITLE:Proth numbers of the form {{Kbn|+|k|n}} with {{Vk}} mod 15 = 0}} Proth numbers {{Kbn|+|k|n}} where {{Vk}}-value is a multiple of 15.1 KB (156 words) - 09:22, 23 July 2021
- {{DISPLAYTITLE:Proth numbers of the form {{Kbn|+|k|n}} with {{Vk}} mod 2145 = 0}} Proth numbers {{Kbn|+|k|n}} where {{Vk}}-value is a multiple of 2145.1 KB (156 words) - 09:36, 23 July 2021
- {{DISPLAYTITLE:Proth numbers of the form {{Kbn|+|k|n}} with {{Vk}} mod 2805 = 0}} Proth numbers {{Kbn|+|k|n}} where {{Vk}}-value is a multiple of 2805.1 KB (158 words) - 09:16, 22 March 2024
- {{DISPLAYTITLE:Proth primes of the form {{Kbn|+|k|n}}, {{Vk}} < 300}} Automatically generated table from available [[:Category:Proth 2 1-300|Proth primes {{Vk}} < 300]].850 bytes (117 words) - 17:18, 25 July 2021
- category=Proth 2 Sierpinski include={Proth prime}:Pk,{Proth prime}:PRemarks741 bytes (99 words) - 21:18, 17 December 2023
- {{DISPLAYTITLE:Proth numbers of the form {{Kbn|+|k|n}} with no prime value so far}} Proth numbers {{Kbn|+|k|n}} where no prime values are known.867 bytes (117 words) - 07:46, 26 July 2021
- {{DISPLAYTITLE:Proth numbers of the form {{Kbn|+|k|n}} with 100 and more primes}} Proth numbers {{Kbn|+|k|n}} with 100 or more prime values {{Vn}}.916 bytes (122 words) - 07:51, 26 July 2021