Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Difference between revisions of "Template:GF Divisor"
Line 39: | Line 39: | ||
will create: | will create: | ||
{{GF Divisor | {{GF Divisor | ||
− | |GFk= | + | |GFk=3 |
− | |GFn= | + | |GFn=209 |
|GFNumber=2468256835981809063232453773836025757474103798450369795022913537 | |GFNumber=2468256835981809063232453773836025757474103798450369795022913537 | ||
|GFFDBid=1000000000002010233 | |GFFDBid=1000000000002010233 | ||
|GFList= | |GFList= | ||
− | 2,1,207 | + | 2,1,207,2020-11-11#Hans Riesel;Ray Ballinger;David Broadhurst |
2,3,2 | 2,3,2 | ||
− | 3,1,207 | + | 3,1,207,1995#Allan Cunningham |
3,2,207 | 3,2,207 | ||
12,10,23 | 12,10,23 | ||
Line 63: | Line 63: | ||
|- | |- | ||
{{#if:{{{GFNumber|}}}| | {{#if:{{{GFNumber|}}}| | ||
− | {{!}} align="right"{{!}} <b>Decimals :</b> {{!}}{{!}} | + | {{!}} align="right"{{!}} <b>Decimals :</b> {{!}}{{!}} {{#ifeq:{{Is Long number|{{{GFNumber}}}}}|1|{{Long number:{{{GFNumber}}}-NL}}<sub><{{Long number:{{{GFNumber}}}-DI}}></sub>|{{{GFNumber}}}<sub><{{#len:{{{GFNumber}}}}}></sub>}} |
− | {{#ifeq:{{ | + | }} |
− | |||
− | |||
− | |||
− | }}}} | ||
|- | |- | ||
{{#if:{{{GFFDBid|}}}| | {{#if:{{{GFFDBid|}}}| |
Revision as of 20:03, 29 June 2021
Description
Template GF Divisor
Collect the Generalized Fermat numbers for which a given Proth prime is a divisor.
Prototype
{{GF Divisor |GFk= |GFn= |GFNumber= |GFFDBid= |GFList= |GFRemarks= }}
Parameters
See also
Example
{{GF Divisor |GFk=3 |GFn=209 |GFNumber=2468256835981809063232453773836025757474103798450369795022913537 |GFFDBid=1000000000002010233 |GFList= 2,1,207,2020-11-11#Hans Riesel;Ray Ballinger;David Broadhurst 2,3,2 3,1,207,1995#Allan Cunningham 3,2,207 12,10,23 |GFRemarks=test }}
will create:
Current data
|
Remarks : |
test |
Divides
- F(207), found Hans Riesel;Ray Ballinger;David Broadhurst by
- xGF(2,2,3)
- GF(207,3), found Allan Cunningham by
- xGF(207,3,2)
- xGF(23,12,10)