# Main Page

Here is a Wiki for primes and related topics, still under construction.

Examples in math (LaTeX) notation
$N \supset \mathbb P = \{ p_n \mid n \in N \}$
$N \supset \mathbb P = \{ p_n \mid n \in N \}$
$\sideset{_1^2}{_3^4}\prod_a^b$
$\sideset{_1^2}{_3^4}\prod_a^b$
$\iiiint\limits_{F} \, dx\,dy\,dz\,dt$
$\iiiint\limits_{F} \, dx\,dy\,dz\,dt$
$f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}$
$f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}$
$\sum_{i=1}^\infty \frac{1}{p_i} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \dotsb = \infty$
$\sum_{i=1}^\infty \frac{1}{p_i} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \dotsb = \infty$
$\pi(1)=0\ ;\ \pi(10) = 4\ ;\ \pi(100) = 25\ ;\ \pi(1000) = 168; \ \pi(1000000)=78498$
$\pi(1)=0\ ;\ \pi(10) = 4\ ;\ \pi(100) = 25\ ;\ \pi(1000) = 168; \ \pi(1000000)=78498$
Example of page categorizations
!TopLevel(18 C)
User de(1 C, 2 P)
User de-N(1 P)
no subcategories
User en(1 C, 6 P)
User en-3(2 P)
no subcategories
User fr(1 C, 2 P)
User fr-1(2 P)
no subcategories
User ru(1 C, 2 P)
User ru-N(2 P)
no subcategories
User uk(1 C, 1 P)
User uk-N(1 P)
no subcategories
User zh(1 C, 1 P)
User zh-1(1 P)
no subcategories
Files(2 C)
Images(10 F)
no subcategories
PDF(2 F)
no subcategories
Frequently asked questions(4 C, 3 P)
Gerneral FAQ(1 P)
no subcategories
Hardware FAQ(1 P)
no subcategories
Math FAQ(empty)
no subcategories
Project FAQ(1 P)
no subcategories
Hardware(21 P)
no subcategories
Help(15 P)
no subcategories
Math(2 C, 74 P)
Factorization(1 C, 14 P)
Factoring program(7 P)
no subcategories
Primality tests(1 C, 11 P)
no subcategories
Number(2 C, 18 P)
Aliquot sequence(2 P)
no subcategories
Prime(9 C, 10 P)
Carol-Kynea prime(4 C, 385 P)
Carol-Kynea power-of(22 P)
no subcategories
no subcategories
no subcategories
no subcategories
Gen. Cullen prime(2 C, 12 P)
no subcategories
no subcategories
Leyland prime(2 C, 1 P)
Leyland prime M(2 C, 1 P)
Leyland prime M PRP(empty)
Leyland prime P(2 C, 1,483 P)
Leyland prime P proven(291 P)
Leyland prime P PRP(1,190 P)
Mersenne prime(53 P)
no subcategories
Proth prime(4 C, 24 P)
Proth k=15k value(2 P)
no subcategories
Proth k=2145k value(empty)
no subcategories
Proth k=2805k value(empty)
no subcategories
Proth k=Low weight(7 P)
no subcategories
Riesel prime(6 C, 107 P)
Riesel k=15k value(7 P)
no subcategories
no subcategories
no subcategories
Riesel k=Low weight(27 P)
no subcategories
Riesel k=Riesel(1 P)
no subcategories
Riesel prime const(1 P)
no subcategories
Twin prime(2 P)
no subcategories
Williams prime(4 C, 1 P)
Williams prime MM(1 C, 172 P)
Williams prime MP(1 C, 146 P)
Williams prime PM(1 C, 90 P)
Williams prime PP(1 C, 83 P)
Woodall prime(3 C)
Gen. Woodall prime(1 C, 12 P)
Gen. Woodall prime M(1 C, 4 P)
Gen. Woodall prime P(1 C, 3 P)
Organizations(1 C, 4 P)
Universities(4 P)
no subcategories
Person(51 P)
no subcategories
Project(5 C, 2 P)
Cunningham project(5 P)
no subcategories
no subcategories
GIMPS FAQ(7 P)
no subcategories
Home Prime Search(3 P)
no subcategories
Seventeen or Bust(6 P)
no subcategories
Reserved(1 C, 69 P)
Multi Reservation(1 P)
no subcategories
Shortcut(19 P)
no subcategories
Software(5 C, 39 P)
Code snippets(3 P)
no subcategories
Factoring program(7 P)
no subcategories
no subcategories
Sieving program(5 P)
no subcategories
Tools(empty)
no subcategories
Spelling(2 P)
no subcategories
System(4 C, 14 P)
Hidden categories(1 C)
Last updated(62 P)
no subcategories
no subcategories
Pages with graphs(1 P)
no subcategories
Stub(32 P)
no subcategories
Teams(1 P)
no subcategories
Templates(4 C, 43 P)
Infoboxes(5 P)
no subcategories
Multilanguage(11 P)
no subcategories
Navboxes(7 P)
no subcategories
Prime collections(25 P)
no subcategories
Websites(10 P)
no subcategories
Example of prime sequence and reservation
Configuration tests: external links open in new browser tab/window