Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Legendre symbol
The Legendre symbol, named after the French mathematician Adrien-Marie Legendre, is used in connection with factorization and quadratic residues.
Definition
If [math]\displaystyle{ p }[/math] is an odd prime number and [math]\displaystyle{ a }[/math] is an integer, then the Legendre symbol
- [math]\displaystyle{ \left(\frac{a}{p}\right) }[/math]
is:
- 0 if [math]\displaystyle{ p }[/math] divides [math]\displaystyle{ a }[/math];
- 1 if [math]\displaystyle{ a }[/math] is a square modulo [math]\displaystyle{ p }[/math] — that is to say there exists an integer [math]\displaystyle{ k }[/math] such that [math]\displaystyle{ k^2 \equiv a \pmod{p} }[/math], or in other words [math]\displaystyle{ a }[/math] is a quadratic residue modulo [math]\displaystyle{ p }[/math];
- −1 if [math]\displaystyle{ a }[/math] is not a square modulo [math]\displaystyle{ p }[/math], or in other words [math]\displaystyle{ a }[/math] is not a quadratic residue modulo [math]\displaystyle{ p }[/math].
Properties of the Legendre symbol
There are a number of useful properties of the Legendre symbol which can be used to speed up calculations. They include:
- [math]\displaystyle{ \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right) }[/math] (it is a completely multiplicative function in its top argument)
- If [math]\displaystyle{ a \equiv b \pmod{p} }[/math], then [math]\displaystyle{ \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right) }[/math]
- [math]\displaystyle{ \left(\frac{1}{p}\right) = 1 }[/math]
- [math]\displaystyle{ \left(\frac{-1}{p}\right) = (-1)^{(p-1)/2} = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv 3 \pmod{4} \end{cases} }[/math]
- [math]\displaystyle{ \left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8} = \begin{cases} 1 & \text{if } p \equiv 1 \text { or } 7 \pmod{8} \\ -1 & \text{if } p \equiv 3 \text{ or } 5 \pmod{8} \end{cases} }[/math]
- If [math]\displaystyle{ q }[/math] is an odd prime then [math]\displaystyle{ \left(\frac{q}{p}\right) = \left(\frac{p}{q}\right)(-1)^{ ((p-1)/2) ((q-1)/2) } }[/math]
The last property is known as the law of quadratic reciprocity. The properties 4 and 5 are traditionally known as the supplements to quadratic reciprocity.
The Legendre symbol is related to Euler's criterion and Euler proved that
- [math]\displaystyle{ \left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p} }[/math]