Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Difference between revisions of "Sophie Germain prime"
(restored) |
(Tagging variables) |
||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | A [[prime | + | A [[prime]] number {{V|p}} is called a '''Sophie Germain prime''' if 2{{V|p}}+1 is also prime. For example, 23 is a Sophie Germain prime because it is a prime and 2*23+1 = 47, also prime. |
It is not known whether there are infinitely many Sophie Germain primes. | It is not known whether there are infinitely many Sophie Germain primes. | ||
Line 6: | Line 6: | ||
The next table includes the first 500 Sophie Germain primes. | The next table includes the first 500 Sophie Germain primes. | ||
+ | ==Table== | ||
'''''ToDo: List of primes as document''''' | '''''ToDo: List of primes as document''''' | ||
+ | |||
+ | This is only a test. | ||
+ | {| class="wikitable" | ||
+ | ! No. !! {{V|p}} !! Link | ||
+ | |- | ||
+ | | 1 || 2 || - | ||
+ | |- | ||
+ | | 2 || 3 || {{NRi|2}} | ||
+ | |- | ||
+ | | 3 || 5 || {{NRi|3|1}} | ||
+ | |- | ||
+ | | 4 || 11 || {{NRi|3|2}} | ||
+ | |- | ||
+ | | 5 || 23 || {{NRi|3|3}} | ||
+ | |- | ||
+ | | 6 || 29 || {{NRi|15|1}} | ||
+ | |- | ||
+ | | 7 || 41 || {{NRi|21|1}} | ||
+ | |- | ||
+ | | 8 || 53 || {{NRi|27|1}} | ||
+ | |- | ||
+ | | 9 || 83 || {{NRi|21|2}} | ||
+ | |- | ||
+ | | 10 || 89 || {{NRi|45|1}} | ||
+ | |- | ||
+ | | 11 || 113 || {{NRi|57|1}} | ||
+ | |- | ||
+ | | 12 || 131 || {{NRi|33|2}} | ||
+ | |- | ||
+ | | 13 || 173 || {{NRi|87|1}} | ||
+ | |- | ||
+ | | 14 || 179 || {{NRi|45|2}} | ||
+ | |- | ||
+ | | 15 || 191 || {{NRi|3|6}} | ||
+ | |- | ||
+ | | 16 || 233 || {{NRi|117|1}} | ||
+ | |- | ||
+ | | 17 || 239 || {{NRi|15|4}} | ||
+ | |- | ||
+ | | 18 || 251 || {{NRi|63|2}} | ||
+ | |- | ||
+ | | 19 || 281 || {{NRi|141|1}} | ||
+ | |- | ||
+ | | 20 || 293 || {{NRi|147|1}} | ||
+ | |- | ||
+ | | 212 || 11519 || {{NRi|45|8}} | ||
+ | |- | ||
+ | | 100000 || 19391363 || {{NRi|4847841|2}} | ||
+ | |- | ||
+ | | || 145135534866431 || {{NRi|33|42}} | ||
+ | |} | ||
+ | :Note: Possible to give the No. (if available) in the comments of the [[Riesel prime]] page (see [[:Template:NVal|Template NVal]])? | ||
==External links== | ==External links== | ||
*[http://primes.utm.edu/top20/page.php?id=2 Top 20 known Sophie Germain primes] | *[http://primes.utm.edu/top20/page.php?id=2 Top 20 known Sophie Germain primes] | ||
*[[Wikipedia:Sophie Germain prime|Sophie Germain prime]] | *[[Wikipedia:Sophie Germain prime|Sophie Germain prime]] | ||
− | [[Category: | + | *The {{OEIS|l|A005384}} |
+ | [[Category:Prime]] |
Latest revision as of 04:26, 3 November 2020
A prime number p is called a Sophie Germain prime if 2p+1 is also prime. For example, 23 is a Sophie Germain prime because it is a prime and 2*23+1 = 47, also prime.
It is not known whether there are infinitely many Sophie Germain primes.
List of Sophie Germain primes
The next table includes the first 500 Sophie Germain primes.
Table
ToDo: List of primes as document
This is only a test.
No. | p | Link |
---|---|---|
1 | 2 | - |
2 | 3 | Mersenne 22-1 |
3 | 5 | Riesel 3•21-1 |
4 | 11 | Riesel 3•22-1 |
5 | 23 | Riesel 3•23-1 |
6 | 29 | Riesel 15•21-1 |
7 | 41 | Riesel 21•21-1 |
8 | 53 | Riesel 27•21-1 |
9 | 83 | Riesel 21•22-1 |
10 | 89 | Riesel 45•21-1 |
11 | 113 | Riesel 57•21-1 |
12 | 131 | Riesel 33•22-1 |
13 | 173 | Riesel 87•21-1 |
14 | 179 | Riesel 45•22-1 |
15 | 191 | Riesel 3•26-1 |
16 | 233 | Riesel 117•21-1 |
17 | 239 | Riesel 15•24-1 |
18 | 251 | Riesel 63•22-1 |
19 | 281 | Riesel 141•21-1 |
20 | 293 | Riesel 147•21-1 |
212 | 11519 | Riesel 45•28-1 |
100000 | 19391363 | Riesel 4847841•22-1 |
145135534866431 | Riesel 33•242-1 |
- Note: Possible to give the No. (if available) in the comments of the Riesel prime page (see Template NVal)?
External links
- Top 20 known Sophie Germain primes
- Sophie Germain prime
- The sequence A005384 in OEIS