Difference between revisions of "Template:Riesel prime"

From Prime-Wiki
Jump to: navigation, search
(added MultiReservation ability)
(Max n from MultiRes)
Line 81: Line 81:
 
   | align="right"| <b>Nash :</b> || {{{RNash}}}
 
   | align="right"| <b>Nash :</b> || {{{RNash}}}
 
   |-
 
   |-
   | align="right"| <b>Max&nbsp;<i>n</i> :</b> || {{Num|{{{RMaxn}}}}}
+
   | align="right"| <b>Max&nbsp;<i>n</i> :</b> || {{#if:{{{RMultiRes|}}}|{{Num|{{Project:Multi Reservation {{{RMultiRes}}}-NMax}}}}|{{Num|{{{RMaxn}}}}}}}
 
   |-
 
   |-
 
   | align="right"| <b>Date :</b> || {{#if:{{{RMultiRes|}}}|{{Project:Multi Reservation {{{RMultiRes}}}-Date}}|{{{RDate}}}}}
 
   | align="right"| <b>Date :</b> || {{#if:{{{RMultiRes|}}}|{{Project:Multi Reservation {{{RMultiRes}}}-Date}}|{{{RDate}}}}}

Revision as of 08:16, 14 February 2020

Description

Template Riesel prime

Display of current data for Riesel primes, comments will be displayed as references at the bottom.

Calling

{{Riesel prime
|Rk=
|RNash=
|RMaxn=
|RDate=
|RReserved=
|RMultiRes=
|RNlist=
|RRemarks=
}}

Categories set

In case of the following conditions special categories will be set automatically:

The category Riesel prime is set by default.

See also

Example

{{Riesel prime
|Rk=19
|RNash=2390
|RMaxn=20
|RDate=2019-03-01
|RReserved=Karsten Bonath
|RNlist=
2;T:ST;C:'''[[M1]]''', Near Woodall: (1+1)*2^1-1, also (2-1)*2^2-1
3;T:SW;C:[[M2]], Woodall: 2*2^2-1
5;C:[[M3]], Near Woodall: (3+1)*2^3-1
7;C:[[M4]], Near Woodall: (5-1)*2^5-1
13;C:[[M5]]
17;C:[[M6]]
19;C:[[M7]], Near Woodall: (15+1)*2^15-1
4253;43912;C:[[M19]]
|RRemarks=For this ''k''-value theses are the [[Mersenne prime]]s.
}}

will create:

Current data

k-value : 19
Count : 8
Nash : 2390
Max n : 20
Date : 2019-03-01
Reserved : Karsten Bonath
2[1], 3[2], 5[3], 7[4], 13[5], 17[6], 19[7], 4253[8]
Remarks :
For this k-value theses are the Mersenne primes.

Notes

  1. Sophie Germain, Twin, M1, Near Woodall: (1+1)*2^1-1, also (2-1)*2^2-1
  2. Sophie Germain, Woodall, M2, Woodall: 2*2^2-1
  3. M3, Near Woodall: (3+1)*2^3-1
  4. M4, Near Woodall: (5-1)*2^5-1
  5. M5
  6. M6
  7. M7, Near Woodall: (15+1)*2^15-1
  8. M19