Factorizations of Homogeneous Cunningham Numbers

The official page by Paul Leyland can be found here and current efforts are available at the Mersenneforum.

Colors: Fully factored  Prime

Notes:
The upper entry in each tablecell represents the '-'-side, the lower entry the '+'-side.
Mouseover a not fully factored entry will show the length in digits of the remaining part (for example as "C185").
Click on the table headline to show or hide the table.

Table 1: 3n - 2n and 3n + 2n for n ≤ 525
Table 2: 4n - 3n and 4n + 3n for n ≤ 420
Table 3: 5n - 2n and 5n + 2n for n ≤ 360
Table 4: 5n - 3n and 5n + 3n for n ≤ 360
Table 5: 5n - 4n and 5n + 4n for n ≤ 360
Table 6: 6n - 5n and 6n + 5n for n ≤ 320
Table 7: 7n - 2n and 7n + 2n for n ≤ 300
Table 8: 7n - 3n and 7n + 3n for n ≤ 300
Table 9: 7n - 4n and 7n + 4n for n ≤ 300
Table 10: 7n - 5n and 7n + 5n for n ≤ 300
Table 11: 7n - 6n and 7n + 6n for n ≤ 300
Table 12: 8n - 3n and 8n + 3n for n ≤ 280
Table 13: 8n - 5n and 8n + 5n for n ≤ 280
Table 14: 8n - 7n and 8n + 7n for n ≤ 280
Table 15: 9n - 2n and 9n + 2n for n ≤ 260
Table 16: 9n - 5n and 9n + 5n for n ≤ 260
Table 17: 9n - 7n and 9n + 7n for n ≤ 260
Table 18: 9n - 8n and 9n + 8n for n ≤ 260
Table 19: 10n - 3n and 10n + 3n for n ≤ 250
Table 20: 10n - 7n and 10n + 7n for n ≤ 250
Table 21: 10n - 9n and 10n + 9n for n ≤ 250
Table 22: 11n - 2n and 11n + 2n for n ≤ 240
Table 23: 11n - 3n and 11n + 3n for n ≤ 240
Table 24: 11n - 4n and 11n + 4n for n ≤ 240
Table 25: 11n - 5n and 11n + 5n for n ≤ 240
Table 26: 11n - 6n and 11n + 6n for n ≤ 240
Table 27: 11n - 7n and 11n + 7n for n ≤ 240
Table 28: 11n - 8n and 11n + 8n for n ≤ 240
Table 29: 11n - 9n and 11n + 9n for n ≤ 240